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Abstract: Phase-space procedure based on coherent state representation is proposed for investigation of reflection and 

transmission of wave beams at a curved dielectric boundary. Numerical simulations of reflection and transmission of light at 

various boundaries separating two different dielectrics are carried out. Significant influence of wave-front curvature and 

polarization of incident beam on the reflectance and transmittance is shown. 
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1. Introduction 

Micro-optical elements are widely used in modern optical 

systems, such as light homogenizers, micro-lens arrays, solar 

cells, etc. For consideration of large aperture micro-optical 

systems, conventional methods, such as physical optics, 

become overly time-consuming. Beam-mode representations 

do not provide right alternative, since the beam modes cannot 

be tracked simply through the arbitrarily curved surfaces. 

Discrete phase-space methods [1, 2] have been proposed as an 

efficient alternative. These methods represent fields as discrete 

and finite superposition of elementary Gaussian beams that 

can be traced easily in a complicated environment. However, 

the method usually proposed to discrete fields, the so-called 

Gabor representation, has been shown numerically unstable [3, 

4]. In [5] the concept of field tracing is introduced that is the 

generalization of ray tracing and enables electromagnetic 

system modelling. 

In this Letter, the approach based on coherent state 

representation is proposed for analysis of reflection and 

transmission of light beam at a curved dielectric surface 

profile. 

Coherent states are used in many different areas of physics 

[6, 7]. In [8] the coherent state method was used for 

consideration of nonparaxial propagation and focusing of 

wave beams in a graded-index medium. The term “coherent 

states” was introduced by Glauber [6] for a one-dimensional 

steady-state quantum oscillator in connection with problems in 

quantum optics. Such states were constructed and investigated 

already by Schrodinger in 1926 [9] in order to establish a 

relationship between the classical and quantum approaches. 

2. Formulation of the Problem 

Consider the curved boundary between two different 

dielectric media (Fig. 1). The absence of media losses is 

assumed below. For simplicity, the two-dimensional 

periodically corrugated interface (y–independent) with the 

period d >> λ is considered, but the extension to the arbitrary 

profile of 3D case is straightforward. 

 

Fig. 1. Geometrical configuration and coordinate system for a boundary. 

The calculation procedure of the reflected and transmitted 

powers consists of the following steps. At first, the incident 

beam field is expanded into coherent states, representing 

elementary Gaussian beams with axis displacement and tilt. 

Note, that in a sense such Gaussian beams are similar to the 

complex rays used for simulation of reflection and 
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transmission of beams at a curved interface in [10]. Coherent 

states (CS) form a full set of functions 
1 2

1dπ α α α− =∫ , 

so the arbitrary incident field E(x,0) can be expanded into a set 

of CS: 
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An explicit form of CS is given by a Gaussian beam 

function 
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where the complex eigenvalues 
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coordinates x0 of the center of the elementary beam and the 

angle of its inclination px0 = n0sinθ0 to the z-axis, n0 is the 

refractive index of medium, w0 is the elementary beam width, 

k = 2π/λ is the wavenumber. 

Note, in contrast to Fourier-expansion, there is no 

requirement for orthogonality of functions, owing to CS form 

overfull function system. The square of the modules 
22

( )f Eα α=  determine the incident beam power 

distribution between the elementary beams (CS). For the 

incident Gaussian beam ( ) ( )1 4
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the amplitudes of expansion have the form 
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The Gaussian elementary beams (CS) pass through the 

interface as determined by the corresponding Fresnel 

coefficients that vary according to the angle of incidence. 

Usually the Fresnel formulae are known from the plane–wave 

limit. However, these formulae can be used also for localized 

wave beams with the beam waists w > λ [11, 12]. 

Finally, total reflected and transmitted powers are 

determined by a summation of powers of all elementary beams. 

The reflectance and transmittance are defined as the ratios of 

reflected and transmitted powers to the incident power, 

accordingly: 
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where 
1( )iR θ  and 

1( )iT θ  are the reflection and transmission 

coefficients, 
1

iθ  is the incident angle. 

The reflection and transmission coefficients for TE 

(transverse electric) and TM (transverse magnetic) linearly 

polarized incident beams, accordingly, are given by the 

expressions [13]: 
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where n1 and n2 are the refractive indexes of media 1 and 2, 

accordingly. 

3. Simulation Results 

For the surface-relief profile z=s(x), the ray (CS) with initial 

coordinates (x0,θ0) strikes the interface at the point (x1, z1), 

where the corresponding incidence angle 
1

iθ  is uniquely 

determined. For example, the incident angle can be expressed 

as 1 0

iθ φ θ= − , where [ ]arctan ( )s xφ ′= , 
( )

( )
ds x

s x
dx

′ =  is the 

derivative of the surface profile function with respect to the x 

coordinate. 

Results of simulation are presented for different surface 

profiles, wavefront curvature radiuses and polarizations of 

incident beam. The parameters for incident beam, surface-

relief, and elementary beam are in the ratio a0 > d >> w0 > λ, 

where d is the diameter of the single element in corrugated 

surface (Fig.1). Fig. 2 shows the reflectance and transmittance 

as function of sag h of the surface relief 
2

0( ) cos ( / )s x h x dπ= with the period d = 50µm for TE and 

TM polarized beams with different wavefront curvature 

radiuses. Analogical dependences are obtained for the 

parabolic surface profile 
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radius of the single element, x0m is the center coordinate of the 



 American Journal of Optics and Photonics 2015; 3(2): 30-33 32 

 

single element (Fig. 3). Lesser sensitivity of the reflection and 

transmission to the sag h and wavefront curvature radius Rf 

changes is observed for parabolic surface profile. Reflectance 

increases and transmittance decreases with the increase of sag 

h. The reflectance and transmittance are sensitive to the 

wavefront curvature radius and polarization of the incident 

beam. For lower-higher index interface the reflectance is lower 

and transmittance is higher for TM polarized beam if h < d. 

For higher-lower index interface there is no evident difference 

between TE and TM polarizations. It follows from the 

simulations that the decrease of the reflectance and increase of 

the transmittance take place with the increase of the sag h for 

TM polarization owing to Brewster angle effect. 

 

Fig. 2. Reflectance r (solid curves) and transmittance t (dashed curves) 

versus depth h at lower/higher index and higher/lower index interfaces for 

different values of incident wavefront curvature radiuses: left - TE polarized 

beam, right – TM polarized beam; curves 1, Rf = 1500 µm; curves 2, plane 

wavefront. 

 

Fig. 3. Reflectance r (solid curves) and transmittance t (dashed curves) 

versus depth h at lower/higher index and higher/lower index interfaces with 

the parabolic profile for different values of incident wavefront curvature 

radiuses: left - TE polarized beam, right – TM polarized beam; curves 1, Rf 

= 1500 µm; curves 2, plane wavefront. 

The proposed method is an efficient alternative to model 

aperture functions and flat-topped laser beams. Unlike the 

superposition of off-axis Gaussian function components used 

in [14], CS decomposition represents the superposition of 

linearly shifted and spatially rotated beams, forming the full 

set of functions. Transfer-matrix method [15] can be used to 

calculate the propagation of off-axis Gaussian beams in 

optical systems with tilted, displaced and curved optical 

elements. 

4. Conclusion 

The CS approach can be used for simulation of intensity 

distribution of light diffracted by the micro-lens array [16, 

17]. As illustrated by simulations, the optical efficiency 

(transmittance) of such systems strongly depends on the 

aspect ratio h/d. For h/d <1 the transmittance of micro-lens 

arrays exceeds 90%, which is in good agreement with the 

existing experimental data. The proposed method is an 

efficient alternative to model aperture functions and flat-

topped laser beams. 

Thus, the CS based continuous decomposition has been 

presented for simulation of light beam reflection and 

transmission at arbitrarily curved surfaces. Reflectance and 

transmittance of light beam at different surface-reliefs with 

depths h >> λ are investigated. This method provides 

effective algorithm to model complicated structures 

(dielectric antennas, lenses, multiple interfaces, solar cells, 

etc.) with the help of combination of wave propagation and 

ray-tracing procedures. 
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